Sequential Fourier-feynman Transform, Convolution and First Variation

نویسندگان

  • K. S. CHANG
  • D. H. CHO
  • B. S. KIM
  • T. S. SONG
چکیده

Cameron and Storvick introduced the concept of a sequential Fourier-Feynman transform and established the existence of this transform for functionals in a Banach algebra Ŝ of bounded functionals on classical Wiener space. In this paper we investigate various relationships between the sequential Fourier-Feynman transform and the convolution product for functionals which need not be bounded or continuous. Also we study the relationships involving this transform and the first variation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Conditional Fourier-feynman Transform and Conditional Convolution Product with Change of Scales on a Function Space I

Abstract. Using a simple formula for conditional expectations over an analogue of Wiener space, we calculate a generalized analytic conditional Fourier-Feynman transform and convolution product of generalized cylinder functions which play important roles in Feynman integration theories and quantum mechanics. We then investigate their relationships, that is, the conditional Fourier-Feynman trans...

متن کامل

Integral transforms, convolution products, and first variations

We establish the various relationships that exist among the integral transform Ᏺ α,β F , the convolution product (F * G) α , and the first variation δF for a class of functionals defined on K[0,T ], the space of complex-valued continuous functions on [0,T ] which vanish at zero. 1. Introduction and definitions. In a unifying paper [10], Lee defined an integral transform Ᏺ α,β of analytic functi...

متن کامل

The Feynman-Kac formula

where ∆ is the Laplace operator. Here σ > 0 is a constant (the diffusion constant). It has dimensions of distance squared over time, so H0 has dimensions of inverse time. The operator exp(−tH0) for t > 0 is an self-adjoint integral operator, which gives the solution of the heat or diffusion equation. Here t is the time parameter. It is easy to solve for this operator by Fourier transforms. Sinc...

متن کامل

Improved Fourier and Hartley transform algorithms: Application to cyclic convolution of real data

This paper highlights the possible tradeoffs between arithmetic and structural complexity when computing cyclic convolution of real data in the transform domain. Both Fourier and Hartley-based schemes are first explained in their usual form and then improved, either from the structural point of view or in the number of operations involved. Namely, we first present an algorithm for the in-place ...

متن کامل

Relationships between Convolution and Correlation for Fourier Transform and Quaternion Fourier Transform

In this paper we introduce convolution theorem for the Fourier transform (FT) of two complex functions. We show that the correlation theorem for the FT can be derived using properties of convolution. We develop this idea to derive the correlation theorem for the quaternion Fourier transform (QFT) of the two quaternion functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007