Sequential Fourier-feynman Transform, Convolution and First Variation
نویسندگان
چکیده
Cameron and Storvick introduced the concept of a sequential Fourier-Feynman transform and established the existence of this transform for functionals in a Banach algebra Ŝ of bounded functionals on classical Wiener space. In this paper we investigate various relationships between the sequential Fourier-Feynman transform and the convolution product for functionals which need not be bounded or continuous. Also we study the relationships involving this transform and the first variation.
منابع مشابه
A Conditional Fourier-feynman Transform and Conditional Convolution Product with Change of Scales on a Function Space I
Abstract. Using a simple formula for conditional expectations over an analogue of Wiener space, we calculate a generalized analytic conditional Fourier-Feynman transform and convolution product of generalized cylinder functions which play important roles in Feynman integration theories and quantum mechanics. We then investigate their relationships, that is, the conditional Fourier-Feynman trans...
متن کاملIntegral transforms, convolution products, and first variations
We establish the various relationships that exist among the integral transform Ᏺ α,β F , the convolution product (F * G) α , and the first variation δF for a class of functionals defined on K[0,T ], the space of complex-valued continuous functions on [0,T ] which vanish at zero. 1. Introduction and definitions. In a unifying paper [10], Lee defined an integral transform Ᏺ α,β of analytic functi...
متن کاملThe Feynman-Kac formula
where ∆ is the Laplace operator. Here σ > 0 is a constant (the diffusion constant). It has dimensions of distance squared over time, so H0 has dimensions of inverse time. The operator exp(−tH0) for t > 0 is an self-adjoint integral operator, which gives the solution of the heat or diffusion equation. Here t is the time parameter. It is easy to solve for this operator by Fourier transforms. Sinc...
متن کاملImproved Fourier and Hartley transform algorithms: Application to cyclic convolution of real data
This paper highlights the possible tradeoffs between arithmetic and structural complexity when computing cyclic convolution of real data in the transform domain. Both Fourier and Hartley-based schemes are first explained in their usual form and then improved, either from the structural point of view or in the number of operations involved. Namely, we first present an algorithm for the in-place ...
متن کاملRelationships between Convolution and Correlation for Fourier Transform and Quaternion Fourier Transform
In this paper we introduce convolution theorem for the Fourier transform (FT) of two complex functions. We show that the correlation theorem for the FT can be derived using properties of convolution. We develop this idea to derive the correlation theorem for the quaternion Fourier transform (QFT) of the two quaternion functions.
متن کامل